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Abstract: A challenge for importers in the automobile industry is adjusting to rapidly
changing market demands. In this work, we describe a practical study of car import
planning based on the monthly car registrations in Austria. We model the task as a data
driven forecasting problem and we implement four different prediction approaches. One
utilizes a seasonal ARIMA model, while the other is based on LSTM-RNN and both
compared to a linear and seasonal baselines. In our experiments, we evaluate the 33
different brands by predicting the number of registrations for the next month and for the
year to come.
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1 Introduction

The automotive industry, one of the largest private inve-
stors in research and development1, has been facing an
unstable and changing market demand [6, 9]. Especially
as the competition between car manufacturers increases,
it has become increasingly challenging to anticipate cu-
stomers’ demand. On the one hand, customers ask for
more individualized vehicles and a larger product va-
riety. On the other hand, policy measures for reducing
emission levels or increasing tax revenue also impact the
vehicle choice [18, 28]. To cover high production expen-
ses while still satisfying local demands, many automobile
manufacturers assemble vehicles at scale economies and
offload them to automobile importers and car dealers
[20, 36]. The problem with this approach is that this li-
mits importers’ and car dealerships’ ability to respond
to dynamic market demands. For instance, they would
implement official distribution strategies and maintain
an inventory of certain models or brands at predeter-
mined volumes each year. However, as reported in [36],
such manufacturing and distribution strategies are con-
tributing to regional differences in pricing, availability
of specific models and vehicle specifications in general.
In order to suppress and regulate the impact of these
strategies, it is crucial for importers and car dealerships
to know and plan for the real market demand. Studies

1 According to the European Commission: https://ec.
europa.eu/growth/sectors/automotive_en (accessed on
January 3rd, 2017)

tried to model the effect of external factors like perso-
nal income and the general market situation [1] and were
able to predict the general market behaviour but could
not apply this on a regional and brand based level.

The present work. In a joint collaboration with Por-
sche Austria, we present a real-world application of pre-
dicting vehicle registrations for car importers and dea-
lerships in the Austrian market. Specifically, the task is
to predict the number of car registrations of a specific
car brand for the next month as well as for the followi-
ng year. This information in turn allows to make timely
decisions on how many cars of a specific brand should
be imported and distributed. For this purpose, we utili-
ze monthly registration data of 33 individual car brands
made available by Porsche Austria. These car registra-
tions are further divided into three categories based on
the number of monthly registration. This lets us esti-
mate the popularity of a particular brand. Respectively,
we present and compare the efficacy against a simple
linear baseline and a seasonal baseline within the MA-
SE of two forecasting approaches for car import plan-
ning: (i) Long Short-Term Memory Recurrent Neural
Network (LSTM-RNN), and (ii) Seasonal Autoregressi-
ve Integrated Moving Average (SARIMA). In our expe-
riments, we study two application scenarios. Firstly, in
a short-term setting, the aim is to predict the number
of cars of a specific brand, which will be registered in
the next month. This information is especially valuable
for car dealerships as they can still adjust the official
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distribution strategies of the automobile manufacturers
when the market suddenly becomes volatile. Secondly,
predicting the car registrations for the following year not
only helps for a timely import planning, but also enables
to provide feedback to the automobile manufacturers to
adjust their distribution strategy beforehand. Having a
detailed prediction of the upcoming month further hel-
ps to better plan and design marketing strategies and
also new car model introductions. As shown by Pauwels
et. al. [24], marketing strategies that increase short-term
sales and the introduction of a new product do have an
impact on the long-term sales performance.

2 Related Work

Since the 1930s until today it has been essential to find
models and predict changes in car demand [27, 34]. This
has been of interest for entities like governments, au-
tomobile manufacturers, car dealerships, environmen-
tal protection groups or public transport authorities
[32, 36]. Early studies tended to use regression models
with economic indices, such as the GDP or world fuel
prices, in combination with manufacturer-specific varia-
bles like car prices and maintenance costs [5, 26]. Other
studies tried to investigate and model the effect of ex-
ternal factors [1, 24]. As the availability of information
sources can be an issue, recent studies also looked into
utilizing data from the Web [11]. All these approaches
aimed to predict the general market behaviour. Howe-
ver, for our specific use case we are interested in the
local market behaviour of Austria and the distinct car
brands.

At present, we identify three main lines of research that
are related to our work: (i) forecasting problems using
linear models, (ii) forecasting problems using nonlinear
models, and (iii) comparative studies of both.

Linear models. The publication from Box and Jenkins
in 1970 [3] has probably had one of the biggest impacts
on the theory and practice of modern time-series ana-
lysis. They improved on early formulations of the Au-
toregressive Moving Average (ARMA) models [33] by
introducing differencing to handle non-stationary time-
series data. In stationary time-series, statistical proper-
ties such as mean, variance, and autocorrelation are all
constant over time. Nonstationarity can be recognized
by observing a trend or seasonality in the data. A time-
series needs to be stationary in order to properly fit an
ARMA model. The introduction of differencing had the
purpose to bridge this gap by stationarizing the time-
series. The ability to work with both stationary and non-
stationary data has popularized the use of ARIMA mo-
dels and their extensions in many areas of science and
industry like [8, 30], just to name a few.

Nonlinear models. In contrast to linear models, which
assume that the future value of a time-series is linearly

related to past observations, nonlinear models like Ar-
tificial Neural Networks (ANN) are increasingly gaining
momentum. Especially in recent years, recurrent neural
networks (RNNs), a type of deep neural networks, which
are deep in the temporal dimension, have been extensi-
vely used for forecasting problems [13, 25]. A RNN is an
extension of a conventional feed-forward neural network,
which can handle sequences of variable length. This is
achieved through a recurrent hidden state whose activa-
tion at each time step depends on the activation of the
previous one. However, it has been observed that in ge-
neral, it is difficult to train an RNN to successfully learn
the long-term dependency within a sequence (e.g., due
to the vanishing or exploding gradient problem) [23].
One effective solution for this problem is to use a Ga-
ted Recurrent Unit (GRU) [7] or a Long Short-Term
Memory (LSTM) [14] recurrent neural network. In this
work, we focus on the LSTM-RNN, which is based on
memory cells instead of neurons. By applying a nonli-
near function and adding a forget gate, each cell main-
tains a memory of a specific point in time. Thus, each
cell can decide whether to keep or discard its existing
memory. Previous work has shown (e.g., [10, 29]) that
such an approach is especially beneficial when model-
ling forecasting problems as it allows to learn long-term
dependencies.

Comparative studies. Many works focus on com-
paring RNNs with a standard stationary ARIMA ap-
proach. For instance, the authors of [31] showed that
ANNs are better suited than an ARMA or ARIMA mo-
del to make long-term water inflow predictions for dam
reservoirs when using monthly data gathered for a peri-
od of 42 years. In [35], the authors showed that an LSTM
neural network outperforms an ARIMA approach for
predicting wind power. They used a year’s worth of data
where the wind speed was recorded every 15 minutes. In
case of predicting traffic speed, the authors of [17] sho-
wed on a 1-month traffic speed data with the updating
frequency of 2 minutes that an LSTM neural network
offers the best performance when compared to an ARI-
MA model. Similar results were presented in [19], where
the authors aimed to predict the daily value of bitcoins
using the data from past 3 years. A general conclusion
could be drawn that approaches based on ANNs typical-
ly outperform ARIMA based approaches when enough
observations are provided. However, we found that this
does not apply in our setting with a smaller amount of
available data.

3 Methodology

We formulate the task of predicting the number of car
brand registrations as follows: let [x1, x2, ..., xn] be the
monthly registrations extracted for a specific brand. We
state that xi ∈ N, (1 ≤ i ≤ n) is the number of new re-
gistrations a car brand x had at month i. To plan
the number of vehicles to import, we seek a model
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M that given a historical monthly registrations time-
series x = [x1, x2, ..., xr−1, xr] , (1 ≤ r ≤ n) provides the
forecast yr+1 = M(x), where y ∈ R is the number of
car brand registrations for the next month. In order
to get the output for several months ahead (e.g., al-
so to predict yr+2), we would incrementally extend
the historical monthly registration time-series using the
previously predicted values (e.g., yr+2 = M(x) where
x = [x1, x2, ..., xr−1, xr, yr+1]). This way, we can say how
many cars of a specific brand should be planned for im-
port based on the past registration data.

3.1 Baseline

For comparison, we first introduce a naive baseline ap-
proach, which uses a simple linear regression model to
predict the upcoming registrations. In this approach, on-
ly the last 12 months of the training data are used to
train the model. In the case of the short-term predic-
tion, the baseline is retrained at every step, where at
each step, one month is added to the training set. This
is further explained in the following Section 4.1 where
we also introduce a seasonal baseline that is contained
within the utilized MASE evaluation metric.

3.2 Long Short-Term Memory (LSTM)

Recurrent neural networks (RNN) are an extension of
conventional feed-forward networks, with the difference
that they can handle time-series of variable-length. This
is achieved through a recurrent hidden state, whose ac-
tivation at each time-step is dependent on the previous
state. As already described in Section 2, RNNs can be
seen as deep architectures in the sense that they are un-
rolled in time and that each layer shares the same mo-
del parameters. In this work, we consequently utilize a
Long Short-Term Memory (LSTM) neural network [14]
to successfully learn possible long-term dependencies.
Specifically, we utilize an LSTM-RNN with one hidden
layer combined with a standard stochastic gradient de-
scent (SGD) for optimization and we apply Nesterov’s
momentum [22]. The internal weights of our model are
initialized with Xavier initialization [12]. To implement
the LSTM-RNN we utilize the open-source Deeplear-
ning4j2 Java library.

Model configuration. When constructing a network,
there are still many hyperparameters, which impact the
final performance of the trained network. For instance,
we utilize the l2 norm and dropout [38] for regulari-
zation as it makes the trained model less sensitive to
noisy data. Additionally, we add a bias to the forget
gate of the memory cell as it was also found to impro-
ve the performance of the network [37]. As proposed
by Mikolov (2012) [21], we also clip the gradients on
a per-element basis. For each gradient g, we set it to
sign(g)∗max(maxAllowedV alue, |g|). This means that
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if a parameter gradient has an absolute value greater
than the defined threshold, we truncate it. This results
in eight different hyperparameters for which we defi-
ne the following search space: (1) the number of hid-
den units in a layer nh ∈ [10, 300], (2) learning rate η ∈
[0.0001, 0.1], (3) momentum µ ∈ [0.1, 0.99], (4) dropout
p ∈ [0.1, 0.9], (5) L2 regularization L2 ∈ [0.0001, 0.1], (6)
a gradient normalization threshold g ∈ [0.5, 1000], (7)
the length of forward and backward truncated back-
propagation through time k ∈ [1, 46] as well as (8) a
forget gate bias bf ∈ [0.5, 5.0]. We search for the opti-
mal values setting using random search, as it was shown
to be a more efficient strategy for parameter optimi-
zation than grid search [2]. This was carried out as
an initial step using the extracted train and validati-
on set (see later in Section 4). Every search iterati-
on lasted 200 epochs and the whole process has been
ran for 14 hours on an IBM System x3550 server with
two 2.0 GHz six-core Intel(R) Xeon(R) E5-2620 pro-
cessors and 128 GB of RAM. This resulted in 169 dif-
ferent model configurations, which were evaluated on
the validation set using the RMSE metric (see later in
Section 4.1). The resulting optimal hyperparameter va-
lues were: nh = 232, η = 0.0121, µ = 0.6568, p = 0.6597,
L2 = 0.0368, g = 588.225, k = 33 and bf = 0.9773.

3.3 SARIMA

SARIMA is an Autoregressive Integrated Moving Ave-
rage (ARIMA) model that considers seasonality in the
time-series data. ARIMA is a linear model and based on
the estimated time-series shown in Figure 1, we assume
that linear time-dependence is an important aspect of
our data. To identify an ARIMA model means to de-
termine the orders (number of time lags) of the Autore-
gressive (AR) and Moving Average (MA) components,
as well as the degree of differencing. As already descri-
bed in Section 2, differencing refers to a transformation
applied to time-series data in order to make it statio-
nary (if necessary). This model can then be denoted as
ARIMA(p, d, q), where p is the order of the non-seasonal
AR component, d is the number of non-seasonal diffe-
rencing and q is the order of the non-seasonal MA com-
ponent. This notation does not consider the case when
seasonality is involved. In this setting, the model is ex-
tended as ARIMA(p, d, q)× (P,D,Q)s and thus named
seasonal-ARIMA or SARIMA for short. The seasonal
model is then determined by the before mentioned p, d
and q parameters as well as four additional ones: (i) the
seasonal AR order P , (ii) the seasonal differencing D,
(iii) the seasonal MA order Q and (iv) a seasonal period
s. The formal notation of SARIMA is defined in [4]. For
simulation and prediction with Seasonal ARIMA models
we utilize ’sarima’, an open-source R package3.

Model configuration. To identify the best SARIMA
model for our data, first, the parameters p, d, q, P , D,

3 https://CRAN.R-project.org/package=sarima
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Figure 1: Monthly car brand registrations used for training.
Left plot shows individual monthly car brand registrations while
the right plot shows a linear trend estimation of the time-series
data based on the median and with 75% and 95% confidence
bands.

Q and s need to be determined. For this task, we apply
the step-wise algorithm for traversing the model space
as proposed by Hyndman and Khandakar [15]. The al-
gorithm conducts a search through the model space wi-
thin the provided constraint values and returns the best
ARIMA model with respect to the Akaike informati-
on criterion function with a correction for finite sample
sizes (AICc). This results in an ARIMA model with a
parameter combination that outputs the lowest AICc va-
lues. In our experiments, we define a search space of the
parameter combinations as follows: p ∈ [0, 5], d ∈ [0, 2],
q ∈ [0, 5], P ∈ [0, 2], D ∈ [0, 1], Q ∈ [0, 1] and we set s to
12 (i.e., a whole year). Note that each car brand yields
a model with different parameter configuration.

4 Experimental Setup

Our study is carried out on car brand registration da-
ta, which was provided by Porsche Austria 4. In total,
we look at the monthly registrations of 33 individual
car brands beginning with 2010 up to the end of 2016.
During this period, four new car brands have just been
introduced (i.e., Dacia, Mini, Smart and Tesla) and the-
refore, for them, a smaller set of data points is available.
As seen in Figure 1, there are differences in popularity
between the individual brands. As such, we further di-
vide the car brands into three categories based on the
median number of monthly registrations (i.e., [0, 100),
[100, 1000) and [1000,∞)). Categorizing the car brands
in such a way enables us to more easily compare the pre-
diction performance between the individual brands. For
instance, having a prediction error of 401 vehicles may
seem high. However, if that is the case for Volkswagen
(VW) (i.e., with monthly car registrations in the thou-
sands), we eventually get on average a percentage error
of 8.59% and then such a number starts to look more
tolerable for the car dealerships. The specific car brands
and their corresponding category can be seen in Table 1

4 This data can also be extracted from the Austrian
institute for statistics: http://www.statistik.at/web_
en/statistics/EnergyEnvironmentInnovationMobility/
transport/road/registration_of_new_vehicles/index.
html

Figure 2: Evaluation procedure for the next month prediction
(i.e., short-term prediction on the left) compared to predicting
the next year to come (i.e., long-term prediction on the right).
The difference lies in how the historical monthly registration
time-series is constructed before it is used to predict the number
of vehicles to import for the next month.

of Section 5 where we report our evaluation results. The
table is sorted by the median number of monthly re-
gistrations within the training set where Tesla has the
lowest median number of registrations (i.e., 1) and VW
by far the most (i.e., 4, 705). Due to space restrictions,
we actually leave out the results of car brands in Ta-
ble 1 from Category 1 (Subaru), Category 2 (Suzuki,
Nissan, Citroen, Kia and Volvo) and Category 3 (Hyun-
dai, Ford, und Opel) that show a similar performance
to other brands from the same category.

4.1 Evaluation protocol

Every car brand contains one data point (i.e., the num-
ber of car registrations) for every month of the data col-
lection period. We divide these monthly values of each
brand into a train, validation and test set. The training
set contains the first 45 months for each car brand (i.e.,
a brand has a sequence of only 45 registration measure-
ments). The following 24 months are used for the vali-
dation set and the most recent 12 data points (i.e., one
year worth of brand registrations) represent the test set.
To evaluate the three prediction approaches, we use the
train and validation set to find the best model confi-
guration for LSTM-RNN and SARIMA as described in
Section 3.2. The individual training data, as well as the
linear trend estimation, can be seen in Figure 1. It shows
the effect of seasonality every 12 months and the diffe-
rent characteristics of each brand as well as the different
amplitudes.

In our experiments, we focus on two scenarios: (1) pre-
dicting how many cars of a specific brand will be regi-
stered next month (i.e. a short-term prediction), and (2)
predicting how many cars will be registered in the fol-
lowing year (i.e. a long-term prediction). Specifically, as
shown in Figure 2 the difference in the evaluation pro-
cedure lies in how the historical monthly registration
time-series is constructed. By predicting next month’s
number of car brand registrations, car dealerships can ti-
mely react and adjust the official distribution strategies
when the market suddenly becomes volatile. To evalua-
te a short-term prediction, we always use the complete
history to anticipate how many cars of a specific brand
should be imported next month. We start with the com-
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plete train and validation set to make the first prediction
and compare it to the first data point of the test set. Af-
terwards, we add the first data point of the test set to
the history and predict the second data point of the test
set. We then continue in such a manner until the whole
test set is evaluated. In case of the long-term prediction,
we use the complete train and validation set to predict
the whole test set. In such a setting, each predicted data
point is used as an input to predict the following one.
As already stated in Section 3, we incrementally extend
the monthly registration time-series from the training
set with previously predicted values in order to get the
next one.

Evaluation metrics. For our study, we report our pre-
diction performance using the following four evaluati-
on metrics: (1) Mean Absolute Error (MAE), (2) Root-
Mean-Square Error (RMSE), (3) Mean Absolute Per-
centage Error (MAPE) and, (4) Mean Absolute Scaled
Error (MASE).

By using MAE, we measure how far away on average
was a predicted value from the expected one:

MAE =
1

N

N∑
t=1

|pt − et|

The RMSE is a well-known quadratic scoring rule which
measures the average magnitude of the error between
predicted and expected values:

RMSE =

√∑N
t=1(pt − et)2

N

The RMSE gives a relatively high weight to large pre-
diction errors which means that it is most useful when
large errors are particularly undesirable, as is the case
when planning car imports. The MAPE is expressed in
generic percentage terms to show how big the error is
when compared to the expected values:

MAPE =
1

N

N∑
t=1

|pt − et
et
|

This is useful when we want to compare the predicti-
on accuracy on cars, which occur in completely diffe-
rent categories based on the number of monthly regi-
strations. The MASE is a measure of forecast accuracy
which compares the MAE of the actual forecast with the
MAEnaive produced by a naive forecast [16]:

MASE =
1

T

N∑
t=1

( |et|
1

T−m

∑T
t=m+1 |pt − pt−m|

)
When forecasts are based on seasonal data, the naive
forecast sets each prediction to the last observed value
of the same season (1 year before). The error measure
is independent of the scale of the data an can therefore
be used to compare forecasts across various car brands
with different scales. In contrast to the MAPE, the mean
absolute scaled error takes negative and positive errors
equally into account as well as large and small forecast
errors.
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(a) Short-term prediction.
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(b) Long-term prediction.

Figure 3: Evaluation results of the linear baseline, LSTM-RNN
and SARIMA in terms of MAE, RMSE, MAPE, MASE. We
report the results for the task of predicting the number of car
brands for the next month (a) and the whole following year (b).

5 Results

The overall performance of the simple baseline, the
LSTM-RNN and the SARIMA approach is given in Fi-
gure 3. In general, the SARIMA approach outperforms

5



(a) (b) (c)

Figure 4: The examples show the long-term evaluation results from Table 1 for Volkswagen, Porsche and Smart comparing forecasted
with actual values. Brands from the 3rd category like Volkswagen (a) should favor lower MAPE, whereas for the ones from the 1st
category, like Porsche (b), a small MAE is more important. As seen by the example of Smart (c), there are cases when SARIMA
cannot find a seasonal trend and the predictions converge to a mean value.

both the baseline and the LSTM-RNN approach. With
respect to our two evaluation scenarios, in our case,
short-term predictions (Figure 3.a) are slightly more ac-
curate than long-term predictions (Figure 3.b). Intere-
stingly enough, the differences between the short and
long-term predictions are quite small, which suggests
that the utilized approaches can be reliably used in both
settings given our datasets.

In the reported MAPE boxplots, we cut off four distinc-
tive outliers (i.e., Lancia, Tesla, Jaguar and Chevrolet)
since the value differences would distort the plots. The
brands Lancia and Chevrolet exhibit the worst perfor-
mance in the evaluated test set. The reason for this is
that they basically vanished from the Austrian car mar-
ket in the evaluated period. The MASE plot also shows
that SARIMA performs much better than the linear re-
gression and the LSTMN-RNN. However, in some cases
the linear baseline is performing better than the SARI-
MA and the implicit seasonal naive baseline. The linear
baseline was able to model the diminishment of Lancia
and Chevrolet and performed best. SARIMA was com-
petitive, yet, the LSTM-RNN showed a much larger pre-
diction error in both the next month and the following
year prediction. This is due to the fact that the data we
used for training had no examples of car brands, which
were gradually vanishing from the market. As such, the
network could not successfully recognize the gradual de-
crease. Actually, we generally argue that since we have
a small number of monthly data for only 33 car brands,
i.e., 33 different time-series examples, makes it really
hard to successfully train an LSTM-RNN for this kind
of a problem. Due to such low amounts of extracted car
brand registration data, the SARIMA approach positi-
ons itself as the better choice to be used in our system
for car import planning.

Looking at evaluation results of individual car brands
in Table 15, we can see that by using SARIMA we can
achieve the best performance for all three categories in

5 Please note that we only report the long-term prediction,
i.e., prediction results of the next 12 months for individual
car brands. This is because the performance between the
evaluated approaches on the reported car brands is mostly
the same.

terms of MAE, RMSE, MAPE and MASE. BMW was
actually the only car brand on which the LSTM-RNN
performed better than SARIMA. The results of SARI-
MA are statistically significantly better in all four error
metrics with p values< 0.05. Of particular interest is the
third category of car brands, where the average month-
ly vehicle count is the highest. In such cases, when the
number of new brand registrations is in the thousands, a
low MAPE is especially favorable. For example as seen
in Table 1 and Figure 4.a, Volkswagen (VW) has on
average around 4,000 car registrations each month and
a low MAPE value such as 8.59% is most favorable, as
the opposite would mean much higher extra costs when
compared to the other two categories. On the contra-
ry, when looking at Porsche within the 1st category of
Table 1, we see that the MAPE when using the SARI-
MA approach is 19.10% for the long-term prediction.
With Porsche being a premium brand, an overall smal-
ler MAE and RMSE value is a much better indicator
for the performance of the utilized approach since the
number of registrations is comparatively low. This can
be seen even better in Figure 4.b, where the results for
the long-term predictions are really close to the ground
truth.

Discussion. While SARIMA performs best most of the
time, there are cases where a seasonal trend cannot be
found and the predictions eventually converge to a mean
value and remain the same. This was the case for three
different car brands in our experiments, namely, Smart,
Jaguar and Land Rover. As seen in Figure 4.c for Smart,
the predicted mean value still produces the smallest er-
ror but is arguably useful as a prediction output. In
general SARIMA scores better values in terms of MA-
SE compared to LSTM-RNN where the naive seasonal
baseline is nearly always better. Nonetheless, in some ca-
ses the naive seasonal baseline is better than SARIMA.
In this respect we also explored the performance of a
weighted hybrid (e.g., MHyb = α·MRNN+β·MSARIMA)
to tackle the shortcomings of the utilized methods. We
found that there are certain settings, where such a com-
bination can be useful (e.g., Jaguar, Dacia, Peugeot and
BMW), but it would still be needed to investigate fur-
ther.
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LSTM SARIMA

Brand MAE RMSE MAPE MASE MAE RMSE MAPE MASE

Category 1

Tesla 77.19 93.44 2.2538 2.693 26.25 31.59 .7577 .916
Jaguar 67.08 75.69 1.3248 1.445 48.83 56.30 .5879 1.052
Smart 65.22 82.61 .6139 1.294 17.83 20.86 .1655 .354
Lancia 123.82 138.09 134.2800 1.891 2.75 2.78 2.0000 .029
Jeep 135.24 152.14 .5052 3.731 32.5 42.24 .1407 .897
Porsche 115.76 134.68 1.5735 7.938 15.25 18.77 .1910 1.046

Category 2

Land Rover 55.25 65.53 .3074 1.287 35.58 45.32 .1855 .829
Mini 91.89 99.54 .3980 2.583 57.83 70.35 .2198 1.625
Alfa Romeo 69.44 90.53 .6285 1.673 43.00 55.45 .3342 1.036
Honda 62.37 83.44 .3194 1.198 58.17 65.65 .2951 1.117
Mitsubishi 113.83 131.80 .5398 1.521 43.25 62.00 .1882 .578
Chevrolet 37.13 53.32 25.3580 9.617 6.58 7.37 5.1000 1.591
Dacia 162.48 222.73 .2328 1.102 124.75 162.20 .1881 .846
Toyota 187.81 213.26 .4011 1.526 90.00 102.82 .2009 .731
Mazda 121.54 145.11 .1412 1.257 82.75 104.71 .0966 .856

Category 3

Peugeot 131.13 154.23 .1478 1.026 103.17 143.45 .1175 .807
Mercedes 367.28 419.89 .2908 1.996 138.67 161.15 .1127 .754
Fiat 259.87 290.59 .2283 1.494 102.00 127.76 .0960 .586
Seat 246.04 311.76 .1978 .930 238.50 266.32 .2009 .901
BMW 293.52 340.53 .1732 .891 311.83 361.36 .1825 .946
Renault 323.74 374.42 .2207 1.375 204.00 236.58 .1255 .866
Audi 198.98 260.31 .1243 1.055 151.75 191.20 .0989 .804
Skoda 425.15 479.02 .2347 1.914 170.75 208.86 .1009 .769
VW 604.02 676.81 .1375 1.619 401.25 456.72 .0859 1.075

Table 1: Results of the LSTM and SARIMA approaches when predicting the number of vehicles of each car brand for the next 12
months. Car brands of the 3rd category have the best MAPE results, which is important if we consider their average number of
monthly brand registrations. In most of the cases SARIMA has a lower MASE and therefore is preferable to LSTM-RNN. These
results area also statistically significantly better in all four error metrics with p values < 0.05.

6 Conclusion

In this paper, we discuss how the problem of car im-
port planning is tackled at Porsche Austria. We showed
how to model the prediction task and evaluated four
different approaches: (i) a simple linear baseline, (ii) an
implicit naive seasonal baseline within MASE, (iii) a
SARIMA model and, (iv) an LSTM recurrent neural
network. Our experimental results reveal that in most
settings, the SARIMA approach showed the best per-
formance. We assume that this is the case due to a low
number of data points and time-series examples, which
are available to train the LSTM-RNN. By comparing
the short-term and long-term predictions, we conclude
that all three approaches can be used for a long-term
car import planning as the error differences are insigni-
ficant.

One limitation of our work is the small number of da-
ta points that are available for the car import data of
the Austrian market. By incorporating the informati-
on of neighbouring countries we plan to investigate if a
better performance of the RNN approach can be achie-
ved. We didn’t investigate the influence of additional
data features for our prediction task. As such, for future
work we also plan to extract additional features like the
registration numbers of used cars and investigate dif-

ferent methods (e.g., seasonal ARIMA with exogenous
parameters), which allow for additional input features.
Finally, we found that there are certain settings, whe-
re a weighted combination of the utilized approaches
can lead to even better performance results. We are fur-
ther investigating the problem of learning the weighting
parameters in order to achieve a meaningful prediction
improvement.

In the end we have shown that a linear model can be
used to predict the upcoming car registrations of a car
brand for one month up until a whole year with ade-
quate accuracy for planning marketing strategies and
new product introductions. These insights can be app-
lied to other domains which have similar market beha-
viour. Further, we showed that the usage of a non-linear
model like an LSTM-RNN did not perform best due to
a low number of data points and this trade-off between
higher complexity and higher computational costs vs.
performance and accuracy increase needs to be conside-
red.
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